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Linear DC Motors 
 
 
The purpose of this supplement is to present the basic material needed to understand the 
operation of simple DC motors.  This is intended to be used as the reference material for 
the linear and DC motors lectures in EE301, as this material is not covered in the text.   
 
Before introducing electric motors, it is helpful to define electric motors.  In simplest 
terms, electric motors are machines which convert electrical energy into mechanical 
energy.  A few examples of familiar electric motors include motors that raise and lower 
car windows, rotate ceiling fans, and spin CDs and DVDs.   
 
A linear motor is a basic easy-to-understand electrical motor.  Although the linear design 
is not useful for most practical electrical motors, the concepts that are learned here are 
useful in understanding rotating DC motors.  This section will introduce or review: some 
basic concepts of magnets and magnetic flux, the Lorentz force law, Faraday's law, and 
then the simple DC linear motor. 
 
15.1 Magnetic Flux 
 
Before electrical machinery can be adequately discussed, it is essential that we first 
introduce magnets in a manner which explains how they are employed in electrical 
machinery.  It is helpful to recap a few basic conclusions from physics. 
  

- Magnets may exist as permanently magnetized materials, logically called 
permanent magnets, or as a temporary magnet, which exists only when electric 
current is flowing, also logically called electromagnets. 

 
- All magnets have two poles, north and south.  These poles give rise to the 
familiar action between two magnets where opposite poles attract while similar 
poles repel. 

 
-  Lines of magnetic flux can be imagined which flow from the north pole to the 
south pole.  These lines of flux, while they do not physically exist, help us 
visualize the direction and strength of the magnetic field between magnetic poles.   
 

15.1.1 Permanent Bar Magnets 
 
Figure 1(a) below shows how the lines of magnetic flux are arranged for a permanent 
bar-shaped magnet.  There are two important features of this diagram.  First, lines of 
magnetic flux are continuous.  That is, the lines of flux exist as unbroken lines flowing 
inside the magnet from south pole to north pole, and, externally to the magnet, flow from 
the north pole and re-enter the south pole.  The same number of lines leave the north pole 
as enter the south pole.  Second, the lines are more tightly spaced close to the magnet 
than far away.  A reasonable – and correct – conclusion is that, since the lines of 
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magnetic flux are denser close to the magnet, the magnet's magnetic field must be 
stronger close to the magnet. These two results will apply to all magnets. 
 

 
 
15.1.2 Current Carrying Wire 
 
As mentioned previously, a flowing current also produces a magnetic field, and therefore 
lines of magnetic flux.  Figure 1(b) shows how lines of magnetic flux are arranged around 
a straight section of a current-carrying wire.  Notice that the lines of flux all form closed 
loops around the wire.  Since they have no beginning or end we cannot indicate where a 
north or south pole would exist, but the lines do have a defined direction.  This direction 
is determined using the right-hand rule as follows: 
 

− point your right thumb in the direction of the current flow in the wire  
− wrap your fingers around the wire   
− your fingers indicate the direction of the lines of magnetic flux 

 
It should be apparent that reversing the direction of current flow will also reverse the 
direction of the lines of magnetic flux.  Not as obvious is that the density of lines of flux 
is dependent on the current: higher current produces a higher density of lines of magnetic 
flux. 
 
15.1.3 Current Carrying Coil 
 
Next we will consider the lines of magnetic flux that result when a length of current-
carrying wire is formed into a tightly wound coil. We will assume that the wire is 
insulated so that current must flow through the entire length of the wire, not short circuit 
between adjacent windings.  
 
Figure 1(c) shows how the lines of magnetic flux are arranged around a coil.  Notice first 
that a north and south pole are defined in this diagram even though they were not for a 
straight wire.  Why this is so is easy to demonstrate graphically.  Figure 2 shows two 
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closely spaced wires in cross section which can be imagined to be any two adjacent wires 
in the coil.  Assuming the wire is wrapped around the coil in the same direction for both, 
the current direction will be the same in both wires (shown here as into the page).  
Therefore the lines of magnetic flux around each wire will be in the same direction.  If 
the wires are closely spaced, then the lines of flux will cancel each other between the 
wires and reinforce each other around the outside of the wires, forming lines of flux 
which will now encompass the pair of wires.   
 

 
 
 
Now extend this simple example to a coil formed by many loops of wire carrying the 
same current.  The net result, shown in Figure 1(c), is then similar to the bar magnet 
shown in Figure 1(a).  The coil has a defined north pole where the lines of flux leave, and 
a south pole where they re-enter.  It should be apparent that more loops of wire, or more 
turns, will produce more lines of magnetic flux. 
 
It is useful to summarize the results regarding the lines of magnetic flux surrounding the 
electromagnet formed by a coil of current-carrying wire.   
 

− the same number of lines leaves the north pole of the magnet as re-enter the south pole.   
− these lines are denser close to the magnet, especially near the poles. 
− the direction of the lines depends on the direction of the current through the coil.   
− changing current direction changes the poles of the magnet. 
− the number of lines depends on the strength of the current: higher current produces  
       more lines of flux. 
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15.2 Magnetic Flux, Magnetic Flux Density, and Magnetic Field 
Intensity 
 
It was alluded to in the previous section that lines of magnetic flux are only imagined.  
Nonetheless, they are useful in understanding how magnets interact.  A slightly more 
rigorous treatment can be achieved by trying to count these lines of flux.  Since these 
lines do not actually exist, we have to construct some model which allows us to count or 
measure them.  In a very simple view, the amount of flux is described by the number of 
lines. Magnetic flux is given the symbol Φ.  We measure magnetic flux in units of 
Webers (Wb), which have equivalent units of volt-seconds.   
 
Now, we arrive at the concept of the magnetic field.  One failing of using lines to depict  
magnetic flux is that this seems to indicate that the magnetic field only exists where these 
lines occur.  But numerous other undefined lines also exist.  A better method would be to 
understand that the actual magnetic field from any magnet is not confined to a set of lines 
which occur along specific paths, but rather that the magnetic field permeates all space.  
The direction of the magnetic field outside the magnet is taken to be from the north pole 
of the magnet to the south pole, and the lines of flux are drawn accordingly.  The 
magnitude of the magnetic field is the flux density.    
 
Thus, we are typically not concerned simply with the magnetic flux, but rather the 
magnetic flux density, B



, which is measured in Teslas (T), or Wb per square meter.  The 
magnetic field is generally quantified by the magnetic flux density, or simply B-field.  
Note that magnetic flux density is a vector quantity since the magnetic flux density has a 
direction and a magnitude.   
 
The final magnetic field quantity to discuss is magnetic field intensity, which is given the 
symbol H



. The units of H


are Amperes per meter, or A/m.  Magnetic field intensity is 
related to the magnetic flux density by: 
 

1   or  H B B Hµ
µ

= =
   

    [Eq. 1] 

        
where µ is the permeability of a material.  Permeability is a measure of how well a given 
material is able to conduct magnetic flux lines.  Most materials have a permeability 
roughly equal to that of free space (air).  However, some materials, such as iron and iron-
based compounds, have a much higher permeability, up to several thousand times higher, 
than free space.  This explains why objects containing iron respond to magnetic fields 
even when not magnetized themselves. 
 
 
 
 
 
We can summarize the key facts about magnetic fields as follows: 
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 - A magnetic field surrounds every magnet. 

- Lines of magnetic flux leave the north pole of the magnet and re-enter at the 
       south pole of the magnet. 
-The unit of flux, Φ, is the Weber (Wb) 
-The magnetic field is generally quantified by the magnetic flux density, B



or 
           B-field, and is measured in Teslas (T), or (Wb/m2). 
 -Permeability, µ, is a measure of how well a given material is able to conduct  
       magnetic flux lines, with most materials having the same permeability as free 

      space.  Iron and other ferrous materials have a high permeability. 
-Magnetic field intensity, H



=  B


/ µ,  varies by material.  Iron and related 
      materials have a much lower H



for a given value of B


 than other materials.  
      The units of H



are A/m. 
 
 
15.3 Magnetic Force  
 
In section 15.1.2 we learned that a wire carrying a current develops a magnetic field that 
surrounds the wire.  As with any magnetic field, the magnetic field surrounding the wire 
will interact with any other magnetic fields present.  This interaction can result in a force 
being applied to the current-carrying wire, which can be used to move the wire.  This 
force is described by the Lorentz Force Law. 
 
Consider a straight length of current-carrying wire.  If the wire, of length L, is placed in a 
uniform magnetic field ( B



) as shown in Figure 3, the wire will be subjected to a 
magnetic force given by: 
 

BLIFd



×=                                                  [Eq. 2] 
 
The above equation treats the length as a vector with its direction given by the direction 
of the current.  The equation states that the force developed is equal to the cross product 
of the current multiplied by the length vector and the magnetic field vector.  The cross 
product implies that the force is proportional to: the current “vector”, the magnitude of 
the magnetic field vector, and the angle between these vectors.  The force is a maximum 
when the angle between the current-carrying length of wire and the magnetic field is 90 
degrees (as in Fig. 3), and the force goes to zero when the current-carrying wire and the 
magnetic field are parallel. 
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Figure 3.  Current Carrying Wire in a Uniform Magnetic Field 

 
 

The result of the Lorentz Force Law is that we can impose a force on a wire in a magnetic 
field by pushing current through the wire.  That wire can then be used to perform 
mechanical work.  This is the fundamental principle behind linear motors, as well as any 
other electric motors, and it allows us to convert electrical energy into mechanical energy 
which can be then be used for mechanical work.   
 
15.4 Linear Motors 
 
We now have sufficient understanding to introduce the linear motor.  As shown in Figure 
4, a simple linear motor consists of a current source, a magnetic field, and a wire that is 
free to move along a set of rails.  Assuming that the current is flowing around the loop as 
indicated, and the magnetic field is going into the page, the effect of the force on the 
moveable wire will be to move the wire to the right (as determined by the cross product).  
This simple concept is how a linear motor operates – a current is moved through a wire 
where the direction of current flow is perpendicular to the magnetic field.  The result is a 
force applied to the wire that makes it move.  The force is dependent on the direction and 
magnitude of the current, the direction and magnitude of the magnetic field, and the angle 
between the current and magnetic field vectors.      
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( ) x BinducedE u L=
 

u


15.4.1 Faraday's Law 
 
From the description of a simple linear motor given above, we see how a force can be 
generated on a current-carrying wire in a magnetic field.  Equation 2 in section 15.3 
indicates that a constant current, perpendicular to a uniform magnetic field, will result in 
constant force on that wire.  If the wire is free to move, the constant force would result in 
constant acceleration.  Constant acceleration would eventually result in physically 
impossible speeds.  It is clear, then, that another equation is needed to describe some 
opposition to this force.   
 
It turns out that changing the magnetic flux flowing through the area defined by a closed 
loop of wire produces a current in the closed loop of wire.  Faraday's law describes this 
result.  It is the concept behind electric generators, which will be discussed later in the 
course.  For now, we will simply accept that current is generated by changing the area of 
a closed loop of wire in a magnetic field.   We needed to introduce Faraday's law in order 
to understand how this current works to counter the force of the Lorenz law. 
 
For the linear motor in Fig. 4, it should be clear that, as the moveable wire slides to the 
right, more and more lines of magnetic flux appear within the circuit loop formed by the 
current source, the rails, and the moveable wire.  Faraday's law states that changing the 
area of a conductor loop in a magnetic field results in a current.  This current is driven by 
an induced voltage which is given by: 
  
                               [Eq. 3] 
 
       where, L



represents the length of, and direction of the current in, the moveable wire 
                        represents the velocity of the moveable wire 
                   B



 represents the magnetic field   
 
The above equation indicates that the induced voltage is dependent on the velocity of the 
wire, the magnitude and direction of the magnetic field, and the current direction and 
length of the wire in the magnetic field.  It is important to understand that the voltage 
induced by moving the wire generates a current which opposes the flow of current from 
the current source shown in Fig. 4.  This opposition is described by Lenz' Law. 
 
 
15.4.2  Linear Motor Operation 
  
In order to describe a variation of the operation of a linear motor, let’s apply a fixed 
voltage to the rails instead of the DC current.  This would be in line with a linear motor 
used on a roller coaster (not quite how it is done, but it gives the general idea).  Figure 5a 
shows the physical setup of the linear motor, including a voltage source to push the 
current (rather than a current source as shown in Figure 4), the rails along which a bar can 
slide, the sliding bar, and a magnetic field..  The direction of the initial current flow, I, the 
force developed, Fd , from the Lorentz law, the resulting velocity, v, and the induced 
voltage, E, are all indicated on the diagram.  Figure 5b shows a circuit diagram which 
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models the physical setup, including a resistor, Rrail , which represents the small but non-
zero resistance of the sliding bar contacting the rails.  .   
 

 
 
 
Assuming the applied voltage is initially zero, the force on the moveable bar will initially 
be zero.  Similarly, if the bar in the magnetic field is initially at rest, the induced voltage 
across the bar is zero. Now assume at some time the voltage VDC  is turned on and current 
begins to flow through the bar.  The initial value for the current is railDC RVI /= , since 
Einduced is 0.  This initial current results in a Lorentz force (Fd) being applied to the bar.  
Up until the time that the bar begins to move, the induced voltage, inducedE , given by 
equation 3 in the previous section, remains zero.  However, once the bar moves, the 
velocity vector v is no longer zero, so the induced voltage is no longer zero.  The KVL 
equation for the circuit in Figure 5b would be: 
 
         VDC  –  I Rrail  –  Einduced  =  0                              [Eq. 4] 
 
which can be rewritten to solve for the current:  
 

        
rail

inducedDC

R
EV

I
−

=                                                  [Eq. 5] 

 
Equation 5 should make it obvious that as Einduced  increases, the current I through the bar 
decreases.  Equation 2 tells us that, as I decreases, the Lorentz force, Fd , decreases.  
Eventually, Einduced will be equal and opposite to VDC , which means that no current will 
flow through the bar (from Equation 5).  Then the Lorentz force will go to zero and the 
bar will have no acceleration.  In other words, it will move at a constant speed.   
 
To use this linear machine as a motor, it would be required to move some mechanical 
load such as a roller coaster cart with some friction that opposes movement.  This friction 
force, or load force, would be treated as a force that opposes the force developed from the 
Lorentz law force, Fd,.  The net force on the bar would then be the difference between the 
developed force and the load force: 
 
 loaddnet FFF −=  
 

Figure 5. Linear Machine with Voltage Source Applied 
 

a.                                                                 b. E is Einduced 
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Analysis of the operation of the linear machine can be conducted using these equations.  
For example, assume that a roller coaster is operating with a fixed applied load.  Once 
steady state operation is achieved, the roller coaster is moving at a constant speed, v, and 
the net force on the roller coaster would be zero.   Hence, a steady state load force would 
imply that:  
 
 loadd FBLIF ==                                         [Eq. 6a] 
 
             [Note that Fd = BLI is the maximum magnitude from the cross product in Eq. 2] 
 
Rearranging this equation implies a steady state current of: 
 

 
BL

F
I load=                                                      [Eq. 6b] 

 
Let us rewrite the KVL equation above (Eq. 4) for convenience: 
 

VDC  –  I Rrail  –  Einduced  =  0                       [Eq. 4] 
 
Into this equation we will substitute: 
 
 Einduced  = BL u       from Eq. 3  [Note that this is the maximum value for the cross  
                                                                product in Eq. 3] 
and, 
 

           
BL

F
I load=                  from Eq. 6b above 

 
This gives: 
 

0load
DC rail

F
V R BLu

BL
− − =                            [Eq. 7a] 

 
Rewriting: 

 
load

DC rail
F

BLu V R
BL

= −                                  [Eq. 7b] 

 
Dividing both sides by BL gives an expression for the steady state velocity: 
 

           
load

DC rail
F

V R
BLu

BL

−
=                                     [Eq. 8]    
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Certainly this analysis does not consider the acceleration of the roller coaster cart, and the 
algebra gets a bit harried if we make the load force dependent on speed.  However, this 
result is useful in that it illustrates some key concepts that we will see again when we 
address DC machines.  First, in a good design, the voltage drop across the resistance 
modeling the rails will be small so that the induced voltage will nearly balance the 
applied DC voltage.  Therefore, if we want a high-speed coaster, we would want the 
induced voltage large and thus VDC as large as practical.  Further, we would want the 
frictional forces to be as small as practical.  Second, the current that flows will be 
sufficient to create an electromagnetic force that balances the load force.  The top speed 
and maximum force required will give us some sense of the power rating of the linear 
motor. 
 
Here is a summary of the linear motor equations: 
 
 

Linear Motor Equations 
 
 

Pin = VDC I           [VDC = supplied voltage]  
 

Pout = Einduced I 
 

η = Pout / Pin 
 

Einduced = B L u        [L = effective length = n × length of one wire] 
 

VDC = I Rrail + Einduced   
 

Fd = B L I               [Fd = developed Lorentz force = Loadsteady state] 
 
 
 
 
Example 1:  Assume we wish to design a 20 kW (output power) roller coaster that will 
reach speeds of 60 mph.  The maximum B-field that we can achieve is 0.8 T.  We have a 
240 VDC source available.  We desire a full-speed efficiency of 92%. 
 

a) what is the required rail resistance  
b) what is the source current  
c) what is the effective length of the “bar” or wire 
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Solution.  The desired output power is telling us now much power is being delivered to 
the induced voltage source shown in Figure 5.  Thus, 
 

kWIEP nducediOUT 20==  
 

The input power is simply the product of the applied voltage and the current: 
 
    IVP DCIN =  
 
Since we desire an efficiency of 92%, this implies that: 
 

    
kWkWP

P

P
P

OUT
IN

IN

OUT

74.21
92.0

20
92.0

92.0

===

==η
 

 
Since the applied voltage is 240 V, we can solve for the current, I: 
 

    
A

V
kW

V
P

I

IVP

DC

IN

DCIN

58.90
240

74.21
===

=
 

 
 
We can also find Einduced now since: 
 

    
V

A
kW

I
P

E

IEP

OUT
induced

inducedOUT

8.220
58.90

20
===

=
 

 
Next, we can use the KVL equation (Eq. 4) to find the rail resistance from our equivalent 
circuit. 
 

    
Ω=

+=
+=

212.0
8.22058.90240

rail

rail

railDC

R
VRV

ERIV
 

 
We now have to convert the given velocity from “miles per hour” to “meters per second”: 
  

 5280 12 1 1 1min60 26.82 /
39.37 60min 60

miles ft in m hru x x x x x m s
hr mile ft in s

= =  
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To find the effective length of the “bar”, we will use the maximum value of the cross 
product of Equation 3: 
 

220.8 10.29
(0.8 )(26.82 / )

induced

induced

E BLu
E VL meters

Bu T m s

=

= = =
 

 
(We would now have to get practical in how we would implement this, since for a mile-
long track, it would not make much sense to have to drive current that far to develop the 
required forces.  But this at least gives us a bit of  a “feel” for designing a linear motor 
with a constant voltage source applied.) 
 
 
 
Example 2:  A 12 V linear motor operates with a B-field of 0.4 T.  The effective length 
of the moveable “bar” is 0.2 meters.  Assume the steady state mechanical load on the 
motor is 0.5 N.  Find the current flowing through the motor and the velocity of the bar if 
the rail resistance is 0.025 Ω . 
 
Solution         
 
 loadd FF =     since 0=netF  at steady state. 
 
Hence: 
 NFd 5.0=  
 
and 

 

AI
I

BLIFd

25.6
)2.0)(4.0(5.0

=
=
=

 

 
Next, using KVL from our circuit model: 
 

 
VE

EAV
ERIV

induced

induced

inducedrailDC

84.11
)025.0()25.6(12

=
+Ω=

+=
 

 
and 
 

 11.84 148 / sec
(0.4 )(0.2 )

induced

induced

E BLu
E Vu m

BL T m

=

= = =
 



www.manaraa.com

 
OK, what have we learned?   
 

• First, we need a magnetic field and a current-carrying conductor to create a 
force on the conductor.  The force is maximum if the field and current are 
orthogonal.   

• Second, a loop (or coil) experiencing a change of flux will exhibit an induced 
voltage.  The induced voltage will attempt to push current in a direction which 
opposes the applied current, thus trying to keep the flux constant.   

 
If the induced voltage (in bullet 2) is created by a conductor moving in a magnetic field, 
then the factors that determine the magnitude of this induced voltage are:  

- the magnitude of the magnetic field  
- the velocity of the conductor, and  
- the length of conductor in the magnetic field.   

 
These factors (in some form) are common to all electric machinery and will be key to our 
understanding the operation of a rotating DC motor next! 
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